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THE ENTROPY OF RADIATION
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The very close agreement between the formula of Planck and the
measured distribution of black body radiation has led to numerous at-
tempts to provide a theoretical basis for this formula. Of these the one

receiving -widest acceptance is that of Einstein,I who obtains the Planck
formula by assuming merely that the chance of emission from an excited
atom is increased by the presence of other light, of the same frequency
as that which the atom emits, and that the increase is proportional to the
concentration of that light.

I shall now approach this problem in a way which seems to me even more
fundamental. The distribution of radiant energy in thermal equilitiriutm
may be calculated as soon as we know the entropy of radiation as a function
of concentration and of frequency. The notion of entropy may in turn
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be referred to the still simpler notion of elementary probability. Without
any premeditated attempt to obtain a. particular result, I find that very
simple assumptions regarding the probability lead directly to an expression
for the entropy of radiation which is identical with the one obtained by
Planck.
Adhering as closely as possible to the notation of Planck, the total radi-

ant energy in a hollow (Hohlraum) will be designated by U, the energy
density by u = U/V. The rate of change of energy density with fre-
quency as we proceed through the spectrum will be called u,. Hence
the density of energy lying between any two giVen frequencies is

* rn~~~~~upf"uvdv.

So also the total entropy, the entropy density, and the rate of change
of entropy density with the frequency will be denoted by S, s, and s,.
Planck makes the assumption that if the whole spectrum is divided into
slices, each slice being that part of the radiation lying between two given
frequencies, then the entropy of each slice, finite or infinitesimal, is the
same as if that slice were alone in the hollow, all the remaining radiation
being removea. I shall not go quite so far as this, but shall make a less
sweeping assumption, the true significance of which will become apparent
as we proceed. Assumption I. By taking successive intervals of fre-
quency the whole radiation may be divided into slices so small that such
quantities as u, and s, may be taken as constant throughout each slice,
and yet so large that the entropy of each slice may be regarded as unchanged
if all other radiation is removed.
As was first done by Joff6,2 we may divide u, by hv to obtain a new

function n, = u,/hv, and from this obtain the related quantities, n and
N. To anyone who has accepted the existence of light quanta or photons3
these new quantities N, n and n, will represent, respectively, the number
of these particles, their concentration and the rate of change of this con-
centration with the frequency. Even those who have not accepted the
existence of these particles as proved will permit us to use these terms in
order to see the consequences that may.follow from the employment of a
method analogous to that employed.in the study of the entropy of gases.
The problem that we have to solve is this: If we have a certain amount

of radiation in a given enclosure, what is the change in entropy when
this radiation is allowed to escape freely into a larger enclosure? This
problem may be put in another way: Suppose that.we have N particles
in a large enclosure, what is the chance of finding at any instant that all
of these particles are contained in a given portion of this enclosure?

If V' is the volume of the large enclosure, and V the smaller volume of
the selected portion, and if there is only one particle present, the chance
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that it will happen to be in the small volume is V/V'. Now if instead
of one particle we have N particles, the simplest assumption is that the
chance that any one particle will be in the volume V is independent of the
number of other particles already there, in which case the chance that all
the particles will be in the smaller volume is (VIV'), and applying the
principle of Boltzmann, the difference in entropy between N particles
in the volume V, and N particles in the volume V' is given by the expres-
sion S - = k ln (V/ V,)N = kN ln (V/ V'). (1)

This is the same as the expression for the change of entropy in the free
expansion of a perfect gas. This equation for the dependence of the en-
tropy of radiation upon the volume leads by known methods, which I
shall not repeat here, to a formula for the distribution of radiant energy
of the type of Wien's, which, as we know from experiment, is nearly but
not quite in accordance with the truth. We also know that the cor-
responding expression for the entropy of a gas is not correct for any actual
but only for an ideal gas.
We are, therefore, led to abandon the simplest assumption that the

probabilities for the several particles are independent, and to try the
following which is obviously the next simplest assumption. Assumption
II. The chance of any one particle being in a selected volume V is a
linear function of the number of particles already in that volume. As-
sumptions I and II suffice for a complete solution of the problem.

If then N particles are supposed to be enclosed in the fixed volume V',
the chance that they will all be in a selected portion of this volume V
is W = WI W2 W3 . . . WN, and the individual probability for any
one particle, numbered m + 1, will be given by the equation,

v"M ~~~~~~~(2)V' V'
where V' and a are constants. If we had been dealing with the mole-
cules of a gas which have no effect on one another, except that each has a
finite volume, we should find this same equation, in which the constant a
would have a negative value. In our present case we shall regard a as
completely undetermined as to sign and magnitude.
The probability that all N particles will be in the volume V is, therefore,

W V V + a V + (N-l)a= a ) V(+ I . .(+N-1
VI V' IV -

(3)
Our problem is not changed if, keeping V', V and N in the same ratios,
we make them as large as we please. We may, therefore, make V/a very
large and, without loss of generality, an integer, so that
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(Z+N-1)!4 IV

~~~~~~~~~~(4)

Now from the Boltzmann equation for the difference in entropy of N
molecules in V and N molecules in V',

S-S' = kln , (5)

and we may employ the Stirling formula, neglecting those terms which be-
come rapidly negligible when V/a and N become very large, in the form

lnx!=xlnx-x (6)

and also neglecting unity in comparison with V/a and N, we find

St- = kNln-n + k(Y+ N)ln(Y+ N)- kvlnY- kN. (7)
VI a a a a

The quantity a has less effect upon the expression of entropy, the larger
the volume is; as we may consider that V' was originally taken so large
compared with V that the entropy S' is in the region of validity of equation
(1). Hence, we may write

S' = kNln-, (8)
Nb

where Nb is a constant analogous to an integration constant, and may
for the present be regarded as undetermined.
Combining (7) and (8), and performing a mere algebraic rearrangement,

we find
aI kV [1 Na\fNa\Na Na

S = kN In +-[(1 + Iln 1 + - ln - , (9)
be a VI\V/V V

where e is the base of the natural logarithms. Dividing by the volume,
we obtain the expression for the entropy density as a function of the
concentration, n = N/V,

s = kn In-+ - [(1 + na) ln (1 + na)-na ln nal. (10)
be a

So far it has not been necessary to be particular as to the kind of radia-
tion present in the hollow or as to whether the correction factor a is the
same when the particles are all of nearly the same frequency or of quite
different frequencies. But now, in order to inspect more closely the
meaning of this correction factor we may consider that we have present
in the hollow only one of our slices of radiation, lying between the fre-
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quencies v and v + Av. Then by Assumption I, s, = s/ Av and n, =
n/ Av, and equation (10) becomes

s, = kn, In a
+ k [(1 + n,a Av) In (1 + nla Av) - n,,a Av In n,a /v]. (11)

be a Av

We may now introduce the thermodynamic principle embodied in
Wien's displacement law. From any of the familiar expressions for that
law we may readily obtain the equation,

s,, = nf() ors, = v2F (s) (12)

Hence by inspection of any one of the terms of (11) we see that n,,a Av
is a function only of n,/v2, and, therefore, a is proportional to 1/V2AV.
The factor of proportionality is now an absolute constant independent of
any of the variables which determine the state of the system. It will,
however, depend upon the units in which these variables are expressed,
but this dependence may also be eliminated if we note that a has the di-
mensions of (length),3 while 1/v2 Av has the dimensions of (time).' Intro-
ducing c, the velocity of light, we have

aC3
a = v2A' ' (13)

v2 AV'
where a is now independent of the variables and the units. It is, therefore,
a pure number. We also see by inspection, comparing equations (11) and
(12), that b must depend upon the variables in the same way as a, and, there-
fore, if ,B is another pure number,

b=- AV. (14)
v2 A,

Equation (11) now becomes

s =k,n ln.I+n a [(1I+n 2c) ln (I + n 2c)O3e ac3 v2

niac3 ni,aC31____C ln I. (15)
v2 v2

While we have thus acquired information regarding the quantity a
by purely mathematical methods, it will be interesting to translate this
information into physical terms. Assumption I states that the entropy
of one slice of radiation is independent of the presence of other slices.
Therefore, any statement regarding the probability that the particles of
a given slice be in a certain volume cannot be affected by the presence or
absence of particles belonging to other slices. On the other hand, it can-
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not be assumed that the particles are affected only by other particles of
precisely the same frequency, for presumably no two particles have fre-
quencies which are exactly the same. We are thus forced to regard the
mutual effect of two particles as a sort of resonance phenomenon, diminish-
ing with great rapidity as the difference in frequency -between the two
particles increases. (It seems probable that this mutual effect would
almost entirely disappear with a difference of frequency. as great as the
width of a fine spectral line.) w

Since we are about to find that a is positive, we might be tempted to
regard this mutual effect of two particles as analogous toattraction. In-
deed, I was formerly tempted to assume an average diminution in the ve-
locity of a particle in the presence of other like particles; or, in other words,
that the refractive index of a space containing. radiation is slightly higher
than unity. It is, perhaps, possible that such a phenomenon may be found
if we ev'er are able to study radiation of enormous density, such as exists
in the interior of the stars. But I am now convinced that it is entirely
negligible in the region of our present measurements. If there were such
a change in. the velocity of radiation in the presence of other radiation,
most of our thermodynamics of radiation, including the Stefan-Boltzmann
law and Wien's displacement law, would fall to the ground.

I feel that the mutual effect of one particle upon the probability of
the presence of another particle is a more subtle thing than can be accounted
for by the mere assumption of forces acting between the particles after
they have started from emitting atom to absorbing atom. But this is a
matter which 1 cannot discuss further here, but must postpone until I
havre developed further my new theory of light.4

Returning to equation 15, we may substitute u, = hpn,, and fiid

ku a kv2 Ft ac3u I ac3u\
= Ien-+c3 1 hv3 ln3

- ac3u,ln acu,1.n (16)
hp-3 hv3

This is the equation obtained by Planck if we assume that

1 (17)
87r

This assumption completes the definition of the interesting quantity a.
To obtain precisely the Planck form it would be necessary to assume also
that a = 3e. This assumption, however, is unimportant and probably
unnecessary. It affects only the additive term in the entropy equation,
and, as we shall see in a further development of the subject, there is no
inconvenience in leaving ,B undetermined for the present.
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It is interesting to note that not a but a Av is specific, or, in other words
independent of the width of the slice considered. If we now substitute
the new value of a and write

aAsv c2
c 8rv2'

we have a quantity which is of the dimensions of an area. Now there
have been several attempts to calculate what, for brevity, has been called
the cross-section of the quantum,5 and the one by Dr. Smith and myself,
based on a classical formula of Lord Rayleigh, gave just this expression
C2/87rV2. I do not wish to stress this point here, but merely allude to it in
passing.

Finally, it may be pointed out that, owing to the peculiar phrasing of
Assumption I, we have obtained the Planck equation for entropy not as an
exact formula but as an approximation; but certainly, admitting the
general validity of the methods here employed, it follows that if equation 1
represents the first approximation to the law of entropy, equation (16)
represents the obvious and necessary second approximation.

1 Einstein, Physik. Z., 18, 121 (1917).
2 Joffe, Ann. Physik, 36, 534 (1911).
Lewis, Nature, 118, 874 (1926).

4Lewis, these PROCEZDINGS, 12, 22 (1926).
5 Ornstein and Burger, Zs. Physik, 20, 345 (1924); Lewis and Smith, J. Amer. Chem.

Soc., 47, 1508 (1925).

LINEAR ELEMENTS OF THE ELECTROMAGNETIC PINHOLE
GRAPHS*
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Following the suggestion at the end of the last paper' a new adjustment
of apparatus was chosen, in which the condenser, C (Fig. 1), is charged
directly on open circuit. Here B is the spring break (conveniently kept
in resonance with the lighting circuit in the key of B), E and R electromo-
tive force (2 cells) and resistance, T, p, telephone and organ pipe, I, II,-
primary and secondary of the transformer. When B is open, C is charged
by E and discharged on closing. The coils I and II were eventually to
be removed. The pinhole probe bc has its point about 1 cm. from the
bottom of the pipe p.

Figure 2 shows the s, C graphs for the intervals 0 to 1.1 m.f. These
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